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The ab initio calculation of defect energetics in aluminium 

A De Vita and M J Gillant 
Physics Department, University of Keele, Keele, Staffordshire ST5 SBG, UK 

Received 1 March 1991 

AbstmcL A detailed study of the energetics and electronic stmcture of the vacancy point 
defect in bulk aluminium is presented. The calculations are based on a nonnconsening 
ob initio pseudopotential and the supercell approach, the energy functional minimization 
being performed with the conjugate gradients technique, with full relaxation of all ionic 
positions. Calculated results for the formation and migration energies and the volume 
of formation are in close agreement with erperiment. The screeningsharge distribution 
around the vacancy is found to be highly localized. Preliminary results are also given 
for the aluminium self-interstitial. 

1. Introduction 

The ability to make reliable and accurate calculations on the energetics of materials 
has made remarkable strides in recent years. Rapid advances in pseudopotential tech- 
niques and in methods for achieving electronic self-consistency have led to standard 
procedures for calculating the cohesive energy, equilibrium lattice constant, elastic 
constants and phonon dispersion relations of perfect crystals. Attention is now turn- 
ing increasingly to the problem of performing reliable calculations on the energetics 
of materials containing defects and impurities. This is often a dilficult problem, be- 
cause of the need to treat systems of many atoms, and to relax the atomic positions 
to mechanical equilibrium. 

The purpose of this paper is to describe a detailed study of the energetics of the 
isolated vacancy in aluminium. The vacancy in aluminium is a particularly important 
test system for ab inirio methods, because it is one of the simplest examples of a 
defect in a technologically important material. In spite of its apparent simplicity, this 
system has proved difficult to deal with. Early attempts to treat it by a perturbation 
expansion in the strength of the pseudopotential proved hopelessly inadequate, as 
shown by Evans and Fmnis (1976). Full ab inilio calculations also initially failed to 
give satisfactory results for the formation energy (Chakraborty et al 19S1, Chakraborty 
and Siege1 1983) and it was only fairly recently that the first successful results were 
obtained from a full electronically self-consistent pseudopotential treatment (Gillan 
19S9). These recent calculations were based on an empirical local pseudopotential 
which, although fairly realistic, cannot be regarded as fully satisfactory. Our purpose 
here is to re-examine the problem of the vacancy in aluminium using a fully ab initio 
non-local pseudopotential. We shall present results for the energy and volume of 
formation of the fully relaxed vacancy, and the energy of vacancy migration (i.e. the 
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energy barrier involved in the vacancy diffusion process). Results will be given for the 
relaxation of the neighbouring ions and the self-consistent valence electron charge 
distribution. We also present results for the energy of formation of the fully relaxed 
self-interstitial. We note that one of the aims of this work is to prepare the way for ab 
inilio pseudopotential calculations on hydrogen in aluminium which will be reported 
in a companion paper. 

As in our previous work (Gillan 1989), the calculations are performed in periodi- 
cally repeated geomey, using up to 27 atomic sites in the unit cell, with a plane-wave 
basis set. Simultaneous relaxation of the electronic and ionic coordinates to the global 
cnergy minimum is performed using the conjugate gradients technique. Brillouin zone 
sampling is performed by the Monkhorst-Pack scheme (Monkhorst and Pack 1976), 
with the Fermi surface smoothing method developed by Gillan (1989). The non-local 
pseudopotential we use is that due to Bachelet el al (1982), in the Kleinman-Bylander 
representation (Kleinman and Bylander 1982), with s and p non-locality. 

The plan of the paper is as follows. In section 2 we summarize in more detail 
the techniques used and the definitions of the quantities we have calculated. Section 
3 presents our results. In the final section 4 we discuss the comparison of our results 
with experiments. In the past two years, there have been a number of othcr studies 
of the aluminium vacancy. We comment in section 4 on the rclation between the 
present work and these other studies. 

A De Vim and M J Gillan 

2. Techniques and definitions 

2.1. Techniques 
We briefly summarize the standard aspects of our calculations before describing some 
special technical features of the work. The total ground state energy involved in the 
minimization procedure has the usual form: 

as a function of the ionic coordinates in the supercell and of the plane-wave coefli- 
cients of the occupied orthonormal electron orbitals. Here Ex, EH, Ex,, E, and EI 
represent the kinetic, Hartree, exchange-correlation, electron-core, and Madelung 
core energies. We adopt the usual local density approximation for E,, as calculated 
by Ceperley and Alder (1980) and parametrized by Perdew and Zunger (1981). The 
electron-core pseudopotential in E, is represented in the fully non-local form due 
to Weinman and Bylander (1982) (KB). We have constructed our KB pseudopotential 
from the semi-local pseudopotential VBHS of Bachelet et af (1982): 

with VL the local potential and P, the projector onto states of angular momentum 1 
in the non-local summation. For third row elements such as aluminium, it is accurate 
enough to terminate the series as 
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where VFHS has been added to the local and subtracted from the non-local terms in 
(2), and where all the other terms for which I > 2 have been disregarded. Denoting 
x , ( r )  the reference atomic pseudo-wavefunctions, the plane wave matrix elemenn of 
the KB pseudopotential VKB are given by the separable form: 

where 

and 
-1 

A, = (Jdr  ~ , ( r ) ~ V , ’ ~ ~ ~ ( r ) )  

This form of the pseudopotential allows one to avoid double summations over k-vector 
indices in the evaluation of the non-local energy contribution to Ec. 

In fact, the form we have adopted here is very close to the KB pseudopotential 
for aluminium reported by Stumpf et a1 (1990). These authors show that the pseu- 
dopotential is free of the ‘ghost’ states that sometimes afflict the KB form, and that it 
closely reproduces the logarithmic derivatives of the all electron wavefunctions within 
a range of about one Haruee from the reference energy levels. We therefore expect 
our pseudopotential to have good transferability properties. 

The calculations are performed in periodic boundary conditions using plane-wave 
basis sets, with repeating cells containing 8, 16 and 27 regular lattice sites, respec- 
tively, corresponding to FCC, BCC and FCC superlattice symmetries. Brillouin zone 
integration is performed on the standard Monkhorst-Pack grid (Monkhorst and Pack 
1976) reduced by symmey to the inequivalent subset of weighted sampling points. 
In order to increase integration efficiency we perform a Fermi surface smoothing 
with variable orbital occupation numbers (Gillan 1989). This smoothing technique 
is equivalent to treating the electron system at finite temperature within the fixed 
supercell volume. The functional being minimised is the free energy A 

A =  E - T S  (7) 

where 

s = -212, C[fi1n(fi) i (1 - fi) Wl- fill (8) 
i 

instead of E itself, S being the entropy associated with the i-orbital occupation 
numbers f i  at temperature T. When A is minimised, the quantity ( A  t E ) / 2  
deviates from the ground state energy only by a term of order - T3. In all the 
calculations to be reported later, we take kBT equal to one tenth of the Fermi 
energy of jellium at the same electron density. Rsts at different values of T show 
that the deviation of ( A  t E ) / 2  from the zero temperature value of E are at most 
a few hundredths of an eV per atom. When we refer later to results for ground state 
‘energies’ we always mean the calculated values of ( A  i- E) /2 .  
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The calculation scheme for determining the electronic ground state is the conju- 
gate gradients method described by Gillan (1989). Like the Car-Parrinello scheme 
(Car and Parrhello 1985), the method involves minimization of the total energy fun= 
tional (actually the free energy A in this case) with respect to all the plane wave 
coefficients, with the constraint that aU the occupied orbitals remain orthonormal. 
We note here the main principles of the method, for full details the paper cited 
above should be consulted. 

The electrons are iteratively relaxed to the ground state with a succession of 
displacements of the vector of plane-wave coefficients ag,i,G (sampling vector q, 
orbital i, plane wave G). The method guarantees that every such displacement 
results in a decrease of free energy. A displacement has two components, which are 
respectively within and orthogonal to the subspace spanned by the current orbitals. 
The displacement within the subspace is a unitary rotation, chosen so that ultimately 
the KohnSham Hamiltonian becomes diagonal. The orthogonal displacement is 
constructed using conjugate gradients. If Fq,i,G are the components of the force 
vector acting on the wavefunctions: 

and if F& denotes the projection of the force into the orthogonal subspace, then 
the new search direction Sq,i,G for the orthogonal displacement of the plane-wave 
coetlicients is given by 

where S&G is the previous search direction and the coefficient is determined by 
the standard conjugate gradients algorithm. 

The relaxation of the ionic coordinates is performed by the method outlined by 
Gillan (1989): once an electronic displacement has been completed, all ions are 
relaxed by steepest descents, holding the orbital coefficients ficd. This relaxation 
procedure is terminated when the energy decrease due to  ionic displacements falls 
below a specified small fraction of the decrease due to the last electronic displacement. 

The global minimisation procedure makes full use of the symmetry of the sys- 
tem. The point sub-group of symmetry operations characterizing the defect system is 
maintained at each iteration step by direct symmetrization of the charge density and 
the non-local component of the forces over the ions. By using symmetry in this way 
we economize on effort, but prevent the system escaping from its initial symmey.  
This means that in cases where the energy could be lowered by symmetry breaking, 
our technique would not yield the true ground state. However, symmetry breaking is 
exceedingly unlikely for any of the situations studied in the present work. 

2 2 Dejinilions 

When referring to the energy of formation Er of the vacancy, we shall mean, as 
usual, the energy change when an atom is removed from the perfect bulk crystal 
and replaced on a new bulk lattice site. The exact definition of Er depends on 
the conditions under which the vacancy is formed. There are at least three natural 
conditions: we can consider the vacancy to be formed with the pressure, the total 
volume or the lattice parameter held fixed. Denoting by E( N, v; a) the energy of 
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the system of N atoms and v vacancies occupying N + Y lattice sites in the volume 
R, the energy of formation at constant volume E; is: 

E: = E ( N , l ; R )  - E(N,O;R) .  (11) 

The quantity of physical interest is obtained for N + 00, the limit being taken with 
R / N  held Iixed. The energies of formation E:, E; at constant pressure and lattice 
parameter are defined in an analogous way. 

The relation between E; and Ef involves the vacancy volume of formation Of, 
defined as the volume change of the whole system when a vacancy is formed at 
constant pressure. If a( N ,  U; p) denotes the equilibrium volume of the system of N 
atoms and v vacancies at pressure p ,  then 

R, = R ( N , l ; p ) - R ( N , O ; p ) .  (12) 

Ef = E( N ,  1; R, + a,) - E( N ,  0;  no) 

The energy of formation at constant pressure can therefore be written as 

(13) 

where no = R(N,O; p). Expanding E up to quadratic order in the small change R,, 
we obtain: 

which can be rewritten in terms of pressure p and bulk modulus B in the vacancy 
system as 

E: = E: + pR, + + O f B / n .  

Ef = E: + ~ ( 0 ,  -a,) + +(ac - nr)2B/R 

(15) 

An analogous relation can be given for E; 

(16) 

where R, is the equilibrium atomic volume in the perfect system at pressure p. Given 
these simple relations, it does not particularly matter which of the formation energies 
we aim to calculate. If p = 0, the case of usual interest, they are all equal in the 
limit N -+ 00: given one, we can obtain the others. 

In practical calculations N is finite, and the definition to be adopted should 
be taken as the one which gives the most rapid convergence to the thermodynamic 
limit with increasing system size. In a previous paper (Gillan 1989) we have given 
perturbation theory arguments which suggest that the formation energy at constant 
atomic volume converges within a few hundredths of an electron volt by the time 
the size of a 27-atom supercell is reached, and we therefore calculate E;. We 
can however estimate through equation (15) the difference that would arise if we 
calculated E:. 

Because of the periodic boundary conditions, we are forced to perform calcula- 
tions on the perfect and defective systems having the same number of lattice sites. 
E; is therefore actually calculated as 

E ( N ,  0;  a). (17) 
N - 1  

N E; = E ( N  - l , l ; ( N -  l ) R / N )  - - 



6230 A De V7a und M J Gillan 

When comparing our calculated formation energy with experiment, we have to 
bear in mind that the quantity derived from experiment is the enthalpy of formation 
at high temperature, not the energy of formation at zero temperature. We return to 
this question in section 4. 

Similar remarks apply to the formation energy of the self-interstitial, which we 
define to be the energy change in going from a perfect crystal of N lattice sites to a 
system of N - 1 lattice sites occupied by N - 1 atoms with an atom on an interstitial 
site. We calculate the formation energy at constant volume. 

Finally, we calculate the migration energy of the vacancy. This is the energy 
barrier that has to be surmounted in moving a vacancy from one site to a neighbouring 
site. We assume that in the saddle-point configuration the migrating atom is midway 
between two nearest-neighbour lattice sites. The migration energy E,  is then the 
energy difference between t h ~  fully relaxed saddle-point configuration and the fully 
relaxed system in which the vacancy is on a regular site. 

3. Results 

3.1. The pc$ect ctystal 

As a preliminary test of our methods we have determined the equilibrium lattice 
parameter a. and bulk modulus B of the perfect crystal. Calculations have been 
performed at a series of values of a. with a constant number of plane waves, using 
a c u t 4  energy which is 13 Hartree when a. has the experimental value of 7.64 au. 
The calculations were performed on the 16-atom system using two sampling points 
in the irreducible wedge. We used five uniformly spaced values of ao, with a rather 
small difference of 0.025 a u  between successive values. This allowed us to deduce 
values for the equilibrium a. and B from a simple parabolic fit to the five values 
of energy. Our calculated values a,, = 7.66 au  and B = 0.722 Mbar are in close 
agreement with the experimental values 7.64 au  and 0.722 Mbar (see Chakraborty 
and Sicgel 1983 and references therein), as previous work would lead one to expect. 
This agreement confirms the technical adequacy of the mcthods used here. 

3.2. The equilibrium vacancy 

We have calculated the ground state energy of the perfect crystal and of the unrelaxed 
and relaxed vacancy for systems containing 8, 16 and 27 lattice sites; we note that 
for the 8-site vacancy system the ions are constrained by symmetry to be exactly on 
their regular sites, so relaxation effects cannot be studied in this case. In all cases, 
the lattice parameter in the perfect system is taken to have the experimental value 
7.64 au. 

In accordance with the dkscussion of section 2, we evaluate the formation energy 
from the total energy of the vacancy system whose lattice parameter is chosen so that 
the number of atoms per unit volume is the same as in the perfect crystal. 

We note here that in calculations of this kind the energy of intercst is obtained 
as the difference of much larger energies. Moreover, these large energies come 
from calculations on systems having different numbers of electrons. It is therefore 
important to ensure the best possible cancellation of errors. 

Given the very large cut-off energy we use, the error due to incompleteness of the 
basis set should be negligible. We believe that the most important remaining source 
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of n u m e n d  error is the imperfection of the Brillouin zone sampling. However, a 
correction can be made for this, which we now outlinc In a nearly-free-electron metal 
l i e  aluminium, the error in the total energy due to imperfect sampling will be similar 
to the error which would be incurred in a calculation on jellium. Now the quantity 
E ( N -  1,l; (N-  l ) Q / N )  - (N -  1)E( N,O; n ) / N  defined in equation (17) would 
be exactly zero in a calculation on jellium using perfect sampling: we subtract the 
total energy for equal numbers of electrons in jellium at the same electron density. 
Hence, the value of this difference for calculations on jellium with the sampling 
actually used gives us an estimate of the sampling error. We call this the 'jellium 
correction' AE,,,,, and we subtract it as a systematic error from the values of E; as 
calculated from equation (17). 

We present in table 1 results for the vacancy formation energy, the relaxation 
energy, and the magnitude of the inward displacement of the nearest neighbours of 
the vacancy. 

Table 1. Calculated values of the fully rebed vacancy formation energy in aluminium 
ior differenl sizes of repeating cell. Rerults are given both Without (uncorrected) and 
with (corrected) the jellium con'ection. Values of the relaxation displacement of vacancy 
neighbours are given in units of the nearest neighbour distance. 

No 01 sites in the cell 8 16 27 

Relaxed (uncorrected) E; (eV) 0.768 0.882 0.590 
Jellium correction AEj.u (eV) 0.103 -0.264 -0.043 
Relaxed (corrected) E; (eV) 0.871 0.622 0.547 
Relaxation energy (eV) - -0.060 -0.075 
Relaxation displacement - 0.011 0.014 

We expect our most reliable result for E; to be the value for the 27-site system, 
namely 0.55 eV. This should be compared with the experimental enthalpy of for- 
mation of 0.66 eV. The significance of this quite close agreement and a comparison 
witb the results of other recent calculations will be discussed later. 

We have calculated the volume of formation Q, from the defining equation (12). 
This requires a knowledge of the volume for which the pressure in the vacancy system 
is zero. IIb determine this, we have calculated the ground state energy of the 16-site 
vacancy system for a series of lattice parameters and performed a parabolic fit as we 
did before for the perfect lattice. We find that the equilibrium volume of the 16-site 
vacancy system is less than that of the Idsite perfect crystal by 0.29a2,, where Q, 
is the atomic volume. The volume of formation Or, obtained by adding Q,, is thus 
0.71Q,, which is quite close to the experimental values (0.60 3z 0.02)Q, (Emrick 
and McArdle 1%9), 0.55Q2, (BabiC er a1 1970) and (0.68 ZIC O.l)Q, (Harrison and 
Wilkes 1971) as reviewed by Seeger et a1 (1971). 

We show in figure 1 the valence electron distribution around the relaxed vacancy 
in the 27-site system, on the (100) and (110) planes passing through the vacancy site. 
The strong deviation of the valence charge density from its bulk value in the region 
of the vacancy, and the spatial anisotropy both within and between the two planes 
are in accord with the results of previous workers. Figure 2 shows a comparison 
of our calculated valence charge density in the vacancy region with the results of 
Chahborty and Siege1 (1983) as reported by Pickett and Klein (1984), which were 
also obtained by a calculation using a supercell and an ab initio pseudopotential. The 
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very close agreement is of interest in view of the poor value for the vacancy formation 
energy obtained by those authors. 

A De Wta and MI Gillan 

Figure 1. Full valence electron density around the relaxed vaeanq in the 27-site system. 
l h e  density is s h a m  in (0) the (100) plane; (b)  Ihe (110) plane, with the vacancy site a1 
the centre of the plot. Values of the density are in 1O-2 au; in these units the average 
AI valence density is 2.1. 

Figure 2. Valence electron density as a function of distance from the centre of the 
vacancy along the (100). (110) and (111) dimtion lines, compared with the results of 
Chakrabony and Siege1 (1983) reported by Picket1 and Klein (1984) (full circles) Same 
units as in figure 1. 

We have also used these results to study the deviation of the electron density 
from its perfect crystal value in the region surrounding the vacancy. This is displayed 
in figure 3. The difference of charge density is obtained by subtracting the perfect 
lattice density from the density in the unrelaxed vacancy system, both systems having 
the same lattice parameter. It can be seen that the two contour plots still retain some 
of the geometrical features of the underlying ‘subtracted’ lattice, modulating the zero 
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contour lobes of the oscillating electron charge displacement. The small absolute 
values of the displaced charge density away from the vacancy strongly suggest that the 
electronic interaction between vacancies in the 27-site supercell should be negligible. 

100 voronry displaced rhwge - 
- .la - .I.* - .1.5 

Figure 3. Displaced charge density around the unrelaxed vacancy in the 271ile system. 
The density is shown in (0) the (KO) plane; (b) the (110) plane. Length scala and 
density units are the Same as in figure 1. 

To check how much the calculated final formation and relaxation energies depend 
on the definitions adopted in the biggest system investigated, we make use of the 
relations (15) and (16) discussed in section 2 to estimate E: and E; from our 
computed value of E;. The results (without jellium correction) are reported in 
table 2. In order to verify that the relations (15) and (16) give adequate estimates, 
we have made a direct calculation of E; for the 27-site cell, the result of which is 
also given in table 2. We also include the values of E; and E; calculated for the 
same system without ionic relaxation, and the related relaxation energies. 

Table 2 Vacancy energies of formation and relaxation energies for the 27-atom cell from 
full calculations at constant volume and lattice parameter. Estimates of the formation 
energy at constant pressure and at constant lattice parameter from equalions (15) and 
(16) are also prwided. Jellium correction is not included here. 

Ions relaxed 0.589 0.5w 0.487 0.483 
Ions unrelaxed 0.664 0.552 - - 
Relax. energy -0.075 -0.052 - - 

3.3. Vacancy migration 

We have calculated the ground state energy of the relaxed system in which a mi- 
grating aluminium atom is lked midway between two vacancies located in nearest 
neighbouring perfect lattice. sites. We report here results for the 16- and 27-site 



6234 

systems at the lattice parameters used for the constant volume equilibrium vacancy 
calculations. From the difference of the total energies we find the migration energy 
to be respectively E,,, = 0.59 eV and E,,, = 0.57 eV, to be compared with the 
experimental value of 0.62 eV (Seeger er a1 1971). 

The role played in the energy evaluation by the (symmetry constrained) ionic 
relaxation is here, as expected, much bigger than in the monovacancy system. The 
mid-vacancy location of the migrating ion has the effect of pushing the nearest neigh- 
bour ions (the ones in a tetrahedral arrangement with the two lattice vacancy sites) 
and pulling the second nearest neighbours (the ones at the closest vertices of the cubic 
faces containing the two vacancies) by the fractions 0.041 and 0.015 of the nearest 
neighbour distance, to be compared with the equilibrium vacancy results in table 1. 
Contour plots for the total valence charge density for this unstable equilibrium ionic 
configuration are provided in figure 4, for the (IM)) and (110) planes. 

A De Pifa and M J Gillan 

Pigum 4. Full valence electron density far vacancy migration in the 27-site relaxed 
system. The density is ah- in (0) the (100) plane; (6) the (110) plane. The migrating 
ion is midway knmn the fwo vacanl sites. Same units as in figure 1.  

3.4. The self-interstitial 

We include here preliminary results for the aluminium self-interstitial, calculated for 
a single interstitial ion placed at the octahedral site, the calculation being performed 
in the 27-site supercell at the usual cut-off energy (13 Hanrees) adopted elsewhere 
in this work. 

The technical difficulty of the calculation resides mainly in the strong long range 
ionic displacement field, which makes extremely troublesome the convergence with 
respect to the system size. For the self-interstitial system in the geometry described 
we obtain from calculation a formation energy at constant volume of 2.8 eV, to be 
confronted with the experimental value 3.2 f 0.5 eV (Schilling 1978) obtained from 
the Frenkel defect formation energy of 3.9 f 0.5 eV, and the vacancy formation 
energy 0.66 eV. The same formation energy as obtained without relaxing the ions 
is found to be 9.7 eV, which leads to a very large relaxation energy of 6.9 eV. 
The calculated displacement of the st nearest neighbour atoms amounts to 19% of 
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the distance from the self-interstitial. Some details about the present theoretical and 
experimenlal understanding of this system will be given in the next section. 

4. Discussion 

In order to provide a framework for the discussion of our results, we summarize in 
table 3 our calculated values of the vacancy formation and migration energies, the 
vacancy formation volume and the octahedral site self-interstitial formation energy, 
together with the experimental values and the results of other recent calculations. 

Table 3. Comparison of our calculated results for the vacancy formation and migration 
energies Er and E,, the vacany formation volume in t e r m  of the atomic volume 
R,, and the formation energy EFIf of the self intenlitial, with experimental and other 
theoretical results. Note that the calculalion of Jansen and Klein do not include lattice 
relaxation. 

E, ( eV)  E, ( eV)  af/a, ET". (eV) 

"T 0.52. - - 10.2= 
0.84b - - - 
0.73< 0.7c 0.66< 3.4c 
0.55d 0.57' 0.72' 2.Sd 

Fxperiment 0.66c 0.132~ 0.626 3.Zf 

Pseudopotential calculalion of Jansen and Klein (1989). 
APW calculalion of Mehl and Klein (1990). 
APW calculation of Denteneer and Soler (1990) 
Present work. 
Fluss et ol (1978) 
Schilling (1978). 

S Emrick and McArdle (1969). 

For all four quantities we find close agreement with the experimental values 
and the calculated results, where these exist. This is extremely encouraging, since it 
suggests that the technical problems which troubled earlier calculations have now been 
largely resolved. The agreement between our pseudopotential results and the APW 
results is particularly satisfactory. Both approaches are based on the LDA, but apart 
from that they involve very different approximations. If these other approximations 
had been reduced to insignificance, the two approaches would give identical results. 
The fairly small size of the differences, while certainly no cause for complacency, 
indicates that the approximations in both approaches are under reasonably good 
control. 

In judging the agreement with experiment, it should be noted that experimental 
values for Ef, E,,, and Qf come from measurements at high temperature, whereas 
our calculations refer to zero temperature. General arguments suggesting that the 
temperature dependence of formation and migration enthalpies should be very weak 
have been given by Gillan (1981) and Harding (1985, 1990). However, the only 
direct evidence we have on aluminium comes from molecular dynamics simulations 
of Jacucci et al (1981), which indicate that the enthalpy of formation of the vacancy 
might be increased by as much as 0.1 eV on going from zero temperature to 860 K. 
This difference is not negligible, but would not affect any of our conclusions. 
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We believe that the most serious source of inaccuracy in our calculations is the 
incompleteness of BZ sampling, a problem that also appears to affect the calculations 
of Denteneer and Soler (1990). The error is most significant for the calculation of Ef, 
since this relies on the energies of systems containing different numbers of electrons, 
so that sampling errors will not cancel Our ‘jellium correction’, which is designed 
to compensate for these errors, turns out to be negligible for our largest cell, but it 
would still be desirable to improve this aspect of the method. The k . p technique 
recently developed by Robertson and Payne (1990) may be the way to do this. 

In the present type of calculation, the results should, in principle, be extrapolated 
to infinite system size, and there is an uncertainty involved in doing this. This problem 
is related to the question of the exact definition to be adopted for such quantities 
as the energy of formation, which we have discussed in section 2.2. Although the 
energies of vacancy formation under conditions of constant volume, pressure or lattice 
parameter become identical for an infinite system, the differences between them are 
not negligible for computationally tractable systems. As we have shown (see table 2), 
the vacancy formation energy may be affected by the definition adopted by as much 
as 0.1 eV, even for the 27-site system. 

The encouraging preliminary results for the self-interstitial which we compare in 
table 3 with other theoretical predictions are now being followed up by a more de- 
tailed examination of this problem, in which we plan to study the stable configuration 
of this defect, which both experiment and previous calculations indicate is not the 
octahedral configuration treated here (Schilling 1978, Sindzingre 19S8), though the 
energy differences between competing mnligurations are expected to be small. Wc 
also note that we have used the present methods in a detailed study of the energetics 
of hydrogen in aluminium, the results of which will be rcported in a companion paper. 
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